Ab initio, DFT and transition state theory calculations on 1,2-HF, HCI and CIF elimination reactions from CH2F–CH2Cly

نویسنده

  • B. Rajakumar
چکیده

This paper reports ab intio, DFT and transition state theory (TST) calculations on HF, HCl and ClF elimination reactions from CH2Cl–CH2F molecule. Both the ground state and the transition state for HX elimination reactions have been optimized at HF, MP2 and DFT calculations with 6-31G*, 6-31G** and 6311++G** basis sets. In addition, CCSD(T) single point calculations were carried out with MP2/6-311++G** optimized geometry for more accurate determination of the energies of the minima and transition state, compared to the other methods employed here. Classical barriers are converted to Arrhenius activation energy by TST calculations for comparisons with experimental results. The pre-exponential factors, A, calculated at all levels of theory are significantly larger than the experimental values. For activation energy, Ea , DFT gives good results for HF elimination, within 4–8 kJ mol 1 from experimental values. None of the methods employed, including CCSD(T), give comparable results for HCl elimination reactions. However, rate constants calculated by CCSD(T) method are in very good agreement with experiment for HCl elimination and they are in reasonable agreement for HF elimination reactions. Due to the strong correlation between A and Ea , the rate constants could be fit to a lower A and Ea (as given by experimental fitting, corresponding to a tight TS) or to larger A and Ea (as given by high level ab initio calculations, corresponding to a loose TS). The barrier for ClF elimination is determined to be 607 kJ mol 1 at HF level and it is unlikely to be important for CH2FCH2Cl. Results for other CH2X–CH2Y (X,Y 1⁄4 F/Cl) are included for comparison.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen Abstraction Reaction of Hydroxyl Radical with 1,1-Dibromoethane and 1,2-Dibromoethane Studied by Using Semi-Classical Transition State Theory

The hydrogen abstraction reaction by OH radical from CH2BrCH2Br (R1) and CH₃CHBr2 (R2) is investigated theoretically by semi-classical transition state theory. The stationary points for both reactions are located by using ωB97X-D and KMLYP density functional methods along with cc-pVTZ basis. Single-point energy calculations are performed at the QCISD(T) and CCSD(T) levels of theory with differe...

متن کامل

Conformational analysis of N- and C-terminally protected tripeptide model glycyl-isoleucine-glycyl: An ab initio and DFT study

An ab initio and density functional theory (DFT) study about conformational analysis of tripeptide model HCO−GLY−L−ILE−GLY−NH2 is presented. The tripeptide was scanned about initial, central, and final residues, separately while for every scanning procedure the two other residues had been kept in the β conformation and side chain (SC) dihedral angles were maintained on the gauche− (g‾) state (χ...

متن کامل

Ab Initio Study of Conformational and Configurational Properties of 1, 3- Diazacyclohepta-1, 2-diene and 1, 3-Diazacycloocta-1, 2-diene

Ab initio calculations at HF/6-31G* level of theory for geometry optimization and MP2/6-31G*//HF/6-31G* for a single point total energy calculation are reported for the importantenergy-minimum conformations and transition-state geometries of 1, 3-diazacyclohepta-1, 2-diene (2) and 1, 3-diazacycloocta-1, 2-diene (3). The C2 symmetric twist-chair (2-TC)conformation of 2 is calculated to be 7.4 kJ...

متن کامل

A hybrid density functional theory (DFT) and ab initio study of α-Acyloxycarboxamides Derived from Indane-1, 2, 3-trione

α-acyloxycarboxamides are synthesized from three component Passerini reaction between indane-1,2,3-trione, isocyanides, and thiophenecarboxylic acids in quantitative yields. The structures of the final products were confirmed by IR, 1H and 13C NMR spectroscopy, mass spectrometry, and elemental analysis. The B3LYP/HF calculations for computation of 1H an...

متن کامل

An Ab Initio SCF-MO Study of Conformational Properties of (Z)- Cyclooctene

Ab initio calculations at HF/6-31G* level of theory for geometry optimization and MP2/6-31G*//HF/6-31G*for total energy calculation are reported for Z-cyclooctene (1). The most favorable conformation of 1 is theunsymmetric boat-chair (1-BC) geometry. Potential energy profiles for two different boat-chair/boat-chairinterconversion processes were calculated. The process via a chair transition sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003